
Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An Introduction to Python
Concurrency

David Beazley
http://www.dabeaz.com

Presented at USENIX Technical Conference
San Diego, June, 2009

1

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

This Tutorial

2

• Python : An interpreted high-level programming
language that has a lot of support for "systems
programming" and which integrates well with
existing software in other languages.

• Concurrency : Doing more than one thing at a
time. Of particular interest to programmers
writing code for running on big iron, but also of
interest for users of multicore PCs. Usually a
bad idea--except when it's not.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Support Files

3

• Code samples and support files for this class

http://www.dabeaz.com/usenix2009/concurrent/

• Please go there and follow along

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An Overview

4

• We're going to explore the state of concurrent
programming idioms being used in Python

• A look at tradeoffs and limitations

• Hopefully provide some clarity

• A tour of various parts of the standard library

• Goal is to go beyond the user manual and tie
everything together into a "bigger picture."

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Disclaimers

5

• The primary focus is on Python

• This is not a tutorial on how to write
concurrent programs or parallel algorithms

• No mathematical proofs involving "dining
philosophers" or anything like that

• I will assume that you have had some prior
exposure to topics such as threads, message
passing, network programming, etc.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Disclaimers

6

• I like Python programming, but this tutorial is
not meant to be an advocacy talk

• In fact, we're going to be covering some
pretty ugly (e.g., "sucky") aspects of Python

• You might not even want to use Python by
the end of this presentation

• That's fine... education is my main agenda.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part I

7

Some Basic Concepts

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Concurrent Programming

• Creation of programs that can work on
more than one thing at a time

• Example : A network server that
communicates with several hundred clients
all connected at once

• Example : A big number crunching job that
spreads its work across multiple CPUs

8

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Multitasking

9

• Concurrency typically implies "multitasking"

run

run

run

run

runTask A:

Task B:

task switch

• If only one CPU is available, the only way it
can run multiple tasks is by rapidly switching
between them

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Parallel Processing

10

• You may have parallelism (many CPUs)

• Here, you often get simultaneous task execution

run

run

run

run

runTask A:

Task B: run

CPU 1

CPU 2

• Note: If the total number of tasks exceeds the
number of CPUs, then each CPU also multitasks

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Task Execution
• All tasks execute by alternating between

CPU processing and I/O handling

11

run run run run

I/O system call

• For I/O, tasks must wait (sleep)

• Behind the scenes, the underlying system will
carry out the I/O operation and wake the
task when it's finished

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

CPU Bound Tasks
• A task is "CPU Bound" if it spends most of

its time processing with little I/O

12

run run run

I/O I/O

• Examples:

• Crunching big matrices

• Image processing

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

I/O Bound Tasks
• A task is "I/O Bound" if it spends most of its

time waiting for I/O

13

run run
I/O

• Examples:

• Reading input from the user

• Networking

• File processing

• Most "normal" programs are I/O bound

run
I/O

run
I/O I/O

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Shared Memory

14

• Tasks may run in the same memory space

run

run

run

run

run
Task A:

Task B: run

CPU 1

CPU 2

object

write

read

• Simultaneous access to objects

• Often a source of unspeakable peril

Process

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Processes

15

• Tasks might run in separate processes

run

run

run

run

run
Task A:

Task B: run

CPU 1

CPU 2

• Processes coordinate using IPC

• Pipes, FIFOs, memory mapped regions, etc.

Process

Process
IPC

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Distributed Computing

16

• Tasks may be running on distributed systems

run

run

run

run

runTask A:

Task B: run

messages

• For example, a cluster of workstations

• Communication via sockets

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 2

17

Why Concurrency and Python?

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Some Issues
• Python is interpreted

18

• Frankly, it doesn't seem like a natural match
for any sort of concurrent programming

• Isn't concurrent programming all about high
performance anyways???

"What the hardware giveth, the software taketh away."

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Why Use Python at All?
• Python is a very high level language

• And it comes with a large library

• Useful data types (dictionaries, lists,etc.)

• Network protocols

• Text parsing (regexs, XML, HTML, etc.)

• Files and the file system

• Databases

• Programmers like using this stuff...
19

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Python as a Framework

• Python is often used as a high-level framework

• The various components might be a mix of
languages (Python, C, C++, etc.)

• Concurrency may be a core part of the
framework's overall architecture

• Python has to deal with it even if a lot of the
underlying processing is going on in C

20

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Programmer Performance
• Programmers are often able to get complex

systems to "work" in much less time using a
high-level language like Python than if they're
spending all of their time hacking C code.

21

"The best performance improvement is the transition from
the nonworking to the working state."

- John Ousterhout

"You can always optimize it later."
- Unknown

"Premature optimization is the root of all evil."
- Donald Knuth

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Performance is Irrelevant
• Many concurrent programs are "I/O bound"

• They spend virtually all of their time sitting
around waiting

• Python can "wait" just as fast as C (maybe
even faster--although I haven't measured it).

• If there's not much processing, who cares if
it's being done in an interpreter? (One
exception : if you need an extremely rapid
response time as in real-time systems)

22

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

You Can Go Faster

• Python can be extended with C code

• Look at ctypes, Cython, Swig, etc.

• If you need really high-performance, you're
not coding Python--you're using C extensions

• This is what most of the big scientific
computing hackers are doing

• It's called "using the right tool for the job"

23

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Commentary
• Concurrency is usually a really bad option if

you're merely trying to make an inefficient
Python script run faster

• Because its interpreted, you can often make
huge gains by focusing on better algorithms
or offloading work into C extensions

• For example, a C extension might make a
script run 20x faster vs. the marginal
improvement of parallelizing a slow script to
run on a couple of CPU cores

24

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 3

25

Python Thread Programming

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Concept: Threads

• What most programmers think of when they
hear about "concurrent programming"

• An independent task running inside a program

• Shares resources with the main program
(memory, files, network connections, etc.)

• Has its own independent flow of execution
(stack, current instruction, etc.)

26

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Thread Basics

27

% python program.py

Program launch. Python
loads a program and starts

executing statements

statement
statement

...

"main thread"

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Thread Basics

28

% python program.py

Creation of a thread.
Launches a function.

statement
statement

...

create thread(foo) def foo():

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Thread Basics

29

% python program.py

Concurrent
execution

of statements

statement
statement

...

create thread(foo) def foo():

statement
statement

...

statement
statement

...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Thread Basics

30

% python program.py

thread terminates
on return or exit

statement
statement

...

create thread(foo) def foo():

statement
statement

...

statement
statement

...

return or exitstatement
statement

...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Thread Basics

31

% python program.py

statement
statement

...

create thread(foo) def foo():

statement
statement

...

statement
statement

...

return or exitstatement
statement

...

Key idea: Thread is like a little
"task" that independently runs

inside your program

thread

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

threading module
• Python threads are defined by a class

import time
import threading

class CountdownThread(threading.Thread):
 def __init__(self,count):
 threading.Thread.__init__(self)
 self.count = count
 def run(self):
 while self.count > 0:
 print "Counting down", self.count
 self.count -= 1
 time.sleep(5)
 return

• You inherit from Thread and redefine run()

32

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

threading module
• Python threads are defined by a class

import time
import threading

class CountdownThread(threading.Thread):
 def __init__(self,count):
 threading.Thread.__init__(self)
 self.count = count
 def run(self):
 while self.count > 0:
 print "Counting down", self.count
 self.count -= 1
 time.sleep(5)
 return

• You inherit from Thread and redefine run()

33

This code
executes in
the thread

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

threading module

• To launch, create thread objects and call start()

t1 = CountdownThread(10) # Create the thread object
t1.start() # Launch the thread

t2 = CountdownThread(20) # Create another thread
t2.start() # Launch

• Threads execute until the run() method stops

34

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Functions as threads

• Alternative method of launching threads

def countdown(count):
 while count > 0:
 print "Counting down", count
 count -= 1
 time.sleep(5)

t1 = threading.Thread(target=countdown,args=(10,))
t1.start()

• Creates a Thread object, but its run()
method just calls the given function

35

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Joining a Thread
• Once you start a thread, it runs independently

• Use t.join() to wait for a thread to exit

t.start() # Launch a thread
...
Do other work
...
Wait for thread to finish
t.join() # Waits for thread t to exit

• This only works from other threads

• A thread can't join itself

36

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Daemonic Threads

• If a thread runs forever, make it "daemonic"
t.daemon = True
t.setDaemon(True)

• If you don't do this, the interpreter will lock
when the main thread exits---waiting for the
thread to terminate (which never happens)

• Normally you use this for background tasks

37

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Interlude

• Creating threads is really easy

• You can create thousands of them if you want

• Programming with threads is hard

• Really hard

38

Q: Why did the multithreaded chicken cross the road?
A: to To other side. get the
 -- Jason Whittington

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Access to Shared Data

• Threads share all of the data in your program

• Thread scheduling is non-deterministic

• Operations often take several steps and might
be interrupted mid-stream (non-atomic)

• Thus, access to any kind of shared data is also
non-deterministic (which is a really good way
to have your head explode)

39

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Accessing Shared Data
• Consider a shared object

x = 0

• And two threads that modify it
Thread-1

...
x = x + 1
...

Thread-2

...
x = x - 1
...

• It's possible that the resulting value will be
unpredictably corrupted

40

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Accessing Shared Data
• The two threads

Thread-1

...
x = x + 1
...

Thread-2

...
x = x - 1
...

• Low level interpreter execution
Thread-1

LOAD_GLOBAL 1 (x)
LOAD_CONST 2 (1)

BINARY_ADD
STORE_GLOBAL 1 (x)

Thread-2

LOAD_GLOBAL 1 (x)
LOAD_CONST 2 (1)
BINARY_SUB
STORE_GLOBAL 1 (x)

thread
switch

41

thread
switch

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Accessing Shared Data
• Low level interpreter code

Thread-1

LOAD_GLOBAL 1 (x)
LOAD_CONST 2 (1)

BINARY_ADD
STORE_GLOBAL 1 (x)

Thread-2

LOAD_GLOBAL 1 (x)
LOAD_CONST 2 (1)
BINARY_SUB
STORE_GLOBAL 1 (x)

thread
switch

42

thread
switch

These operations get performed with a "stale"
value of x. The computation in Thread-2 is lost.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Accessing Shared Data
• Is this actually a real concern?

x = 0 # A shared value
def foo():
 global x
 for i in xrange(100000000): x += 1

def bar():
 global x
 for i in xrange(100000000): x -= 1

t1 = threading.Thread(target=foo)
t2 = threading.Thread(target=bar)
t1.start(); t2.start()
t1.join(); t2.join() # Wait for completion
print x # Expected result is 0

43

• Yes, the print produces a random nonsensical
value each time (e.g., -83412 or 1627732)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Race Conditions
• The corruption of shared data due to

thread scheduling is often known as a "race
condition."

• It's often quite diabolical--a program may
produce slightly different results each time
it runs (even though you aren't using any
random numbers)

• Or it may just flake out mysteriously once
every two weeks

44

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Thread Synchronization

• Identifying and fixing a race condition will
make you a better programmer (e.g., it
"builds character")

• However, you'll probably never get that
month of your life back...

• To fix : You have to synchronize threads

45

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 4

46

Thread Synchronization Primitives

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Synchronization Options
• The threading library defines the following

objects for synchronizing threads

• Lock

• RLock

• Semaphore

• BoundedSemaphore

• Event

• Condition

47

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Synchronization Options

• In my experience, there is often a lot of
confusion concerning the intended use of
the various synchronization objects

• Maybe because this is where most
students "space out" in their operating
system course (well, yes actually)

• Anyways, let's take a little tour

48

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Mutex Locks

• Mutual Exclusion Lock
m = threading.Lock()

• Probably the most commonly used
synchronization primitive

• Primarily used to synchronize threads so
that only one thread can make modifications
to shared data at any given time

49

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Mutex Locks

• There are two basic operations
m.acquire() # Acquire the lock
m.release() # Release the lock

• Only one thread can successfully acquire the
lock at any given time

• If another thread tries to acquire the lock
when its already in use, it gets blocked until
the lock is released

50

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Use of Mutex Locks
• Commonly used to enclose critical sections

x = 0
x_lock = threading.Lock()

51

Thread-1

...
x_lock.acquire()

x = x + 1

x_lock.release()
...

Thread-2

...
x_lock.acquire()

x = x - 1

x_lock.release()
...

Critical
Section

• Only one thread can execute in critical section
at a time (lock gives exclusive access)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Using a Mutex Lock
• It is your responsibility to identify and lock

all "critical sections"

52

x = 0
x_lock = threading.Lock()

Thread-1

...
x_lock.acquire()
x = x + 1
x_lock.release()
...

Thread-2

...
x = x - 1
...

If you use a lock in one place, but
not another, then you're missing

the whole point. All modifications
to shared state must be enclosed

by lock acquire()/release().

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Locking Perils

• Locking looks straightforward

• Until you start adding it to your code

• Managing locks is a lot harder than it looks

53

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Lock Management
• Acquired locks must always be released

• However, it gets evil with exceptions and
other non-linear forms of control-flow

• Always try to follow this prototype:

54

x = 0
x_lock = threading.Lock()

Example critical section
x_lock.acquire()
try:
 statements using x
finally:
 x_lock.release()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Lock Management
• Python 2.6/3.0 has an improved mechanism

for dealing with locks and critical sections

55

x = 0
x_lock = threading.Lock()

Critical section
with x_lock:
 statements using x
...

• This automatically acquires the lock and
releases it when control enters/exits the
associated block of statements

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Locks and Deadlock
• Don't write code that acquires more than

one mutex lock at a time

56

x = 0
y = 0
x_lock = threading.Lock()
y_lock = threading.Lock()

with x_lock:
 statements using x
 ...
 with y_lock:
 statements using x and y
 ...

• This almost invariably ends up creating a
program that mysteriously deadlocks (even
more fun to debug than a race condition)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

RLock
• Reentrant Mutex Lock

m = threading.RLock() # Create a lock
m.acquire() # Acquire the lock
m.release() # Release the lock

• Similar to a normal lock except that it can be
reacquired multiple times by the same thread

• However, each acquire() must have a release()

• Common use : Code-based locking (where
you're locking function/method execution as
opposed to data access)

57

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

RLock Example
• Implementing a kind of "monitor" object

class Foo(object):
 lock = threading.RLock()
 def bar(self):
 with Foo.lock:
 ...
 def spam(self):
 with Foo.lock:
 ...
 self.bar()
 ...

58

• Only one thread is allowed to execute
methods in the class at any given time

• However, methods can call other methods that
are holding the lock (in the same thread)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Semaphores
• A counter-based synchronization primitive

m = threading.Semaphore(n) # Create a semaphore
m.acquire() # Acquire
m.release() # Release

• acquire() - Waits if the count is 0, otherwise
decrements the count and continues

• release() - Increments the count and signals
waiting threads (if any)

• Unlike locks, acquire()/release() can be called
in any order and by any thread

59

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Semaphore Uses

• Resource control. You can limit the number
of threads performing certain operations.
For example, performing database queries,
making network connections, etc.

• Signaling. Semaphores can be used to send
"signals" between threads. For example,
having one thread wake up another thread.

60

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Resource Control
• Using a semaphore to limit resources

sema = threading.Semaphore(5) # Max: 5-threads

def fetch_page(url):
 sema.acquire()
 try:
 u = urllib.urlopen(url)
 return u.read()
 finally:
 sema.release()

61

• In this example, only 5 threads can be
executing the function at once (if there are
more, they will have to wait)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Thread Signaling

• Using a semaphore to signal
done = threading.Semaphore(0)

62

...
statements
statements
statements
done.release()

done.acquire()
statements
statements
statements
...

Thread 1 Thread 2

• Here, acquire() and release() occur in different
threads and in a different order

• Often used with producer-consumer problems

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Events
• Event Objects

e = threading.Event()
e.isSet() # Return True if event set
e.set() # Set event
e.clear() # Clear event
e.wait() # Wait for event

• This can be used to have one or more
threads wait for something to occur

• Setting an event will unblock all waiting
threads simultaneously (if any)

• Common use : barriers, notification

63

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Event Example
• Using an event to ensure proper initialization

init = threading.Event()

def worker():
 init.wait() # Wait until initialized
 statements
 ...

def initialize():
 statements # Setting up
 statements # ...
 ...
 init.set() # Done initializing

Thread(target=worker).start() # Launch workers
Thread(target=worker).start()
Thread(target=worker).start()
initialize() # Initialize

64

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Event Example
• Using an event to signal "completion"
def master():
 ...
 item = create_item()
 evt = Event()
 worker.send((item,evt))
 ...
 # Other processing
 ...
 ...
 ...
 ...
 ...
 # Wait for worker
 evt.wait()

65

Worker Thread

item, evt = get_work()
processing
processing
...
...
Done
evt.set()

• Might use for asynchronous processing, etc.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Condition Variables
• Condition Objects

cv = threading.Condition([lock])
cv.acquire() # Acquire the underlying lock
cv.release() # Release the underlying lock
cv.wait() # Wait for condition
cv.notify() # Signal that a condition holds
cv.notifyAll() # Signal all threads waiting

66

• A combination of locking/signaling

• Lock is used to protect code that establishes
some sort of "condition" (e.g., data available)

• Signal is used to notify other threads that a
"condition" has changed state

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Condition Variables
• Common Use : Producer/Consumer patterns

items = []
items_cv = threading.Condition()

67

item = produce_item()
with items_cv:
 items.append(item)

with items_cv:
 ...
 x = items.pop(0)

Do something with x
...

Producer Thread Consumer Thread

• First, you use the locking part of a CV
synchronize access to shared data (items)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Condition Variables
• Common Use : Producer/Consumer patterns

items = []
items_cv = threading.Condition()

68

item = produce_item()
with items_cv:
 items.append(item)
 items_cv.notify()

with items_cv:
 while not items:
 items_cv.wait()
 x = items.pop(0)

Do something with x
...

Producer Thread Consumer Thread

• Next you add signaling and waiting

• Here, the producer signals the consumer
that it put data into the shared list

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Condition Variables
• Some tricky bits involving wait()

69

with items_cv:
 while not items:
 items_cv.wait()
 x = items.pop(0)

Do something with x
...

Consumer Thread
• Before waiting, you have

to acquire the lock

• wait() releases the lock
when waiting and
reacquires when woken

• Conditions are often transient and may not
hold by the time wait() returns. So, you must
always double-check (hence, the while loop)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Interlude

• Working with all of the synchronization
primitives is a lot trickier than it looks

• There are a lot of nasty corner cases and
horrible things that can go wrong

• Bad performance, deadlock, livelock,
starvation, bizarre CPU scheduling, etc...

• All are valid reasons to not use threads

70

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 5

71

Threads and Queues

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Threads and Queues
• Threaded programs are often easier to manage

if they can be organized into producer/
consumer components connected by queues

72

Thread 1
(Producer)

Thread 2
(Consumer)Queue

send(item)

• Instead of "sharing" data, threads only
coordinate by sending data to each other

• Think Unix "pipes" if you will...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Queue Library Module
• Python has a thread-safe queuing module

• Basic operations
from Queue import Queue

q = Queue([maxsize]) # Create a queue
q.put(item) # Put an item on the queue
q.get() # Get an item from the queue
q.empty() # Check if empty
q.full() # Check if full

73

• Usage : You try to strictly adhere to get/put
operations. If you do this, you don't need to
use other synchronization primitives.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Queue Usage

• Most commonly used to set up various forms
of producer/consumer problems

for item in produce_items():
 q.put(item)

74

while True:
 item = q.get()
 consume_item(item)

from Queue import Queue
q = Queue()

Producer Thread Consumer Thread

• Critical point : You don't need locks here

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Queue Signaling
• Queues also have a signaling mechanism

q.task_done() # Signal that work is done
q.join() # Wait for all work to be done

75

• Many Python programmers don't know
about this (since it's relatively new)

• Used to determine when processing is done

for item in produce_items():
 q.put(item)
Wait for consumer
q.join()

while True:
 item = q.get()
 consume_item(item)
 q.task_done()

Producer Thread Consumer Thread

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Queue Programming
• There are many ways to use queues

• You can have as many consumers/producers
as you want hooked up to the same queue

76

Queue

producer

producer

producer

consumer

consumer

• In practice, try to keep it simple

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 6

77

The Problem with Threads

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An Inconvenient Truth

• Thread programming quickly gets hairy

• End up with a huge mess of shared data, locks,
queues, and other synchronization primitives

• Which is really unfortunate because Python
threads have some major limitations

• Namely, they have pathological performance!

78

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Performance Test
• Consider this CPU-bound function

def count(n):
 while n > 0:
 n -= 1

79

• Sequential Execution:
count(100000000)
count(100000000)

• Threaded execution
t1 = Thread(target=count,args=(100000000,))
t1.start()
t2 = Thread(target=count,args=(100000000,))
t2.start()

• Now, you might expect two threads to run
twice as fast on multiple CPU cores

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Bizarre Results
• Performance comparison (Dual-Core 2Ghz

Macbook, OS-X 10.5.6)

80

Sequential : 24.6s
Threaded : 45.5s (1.8X slower!)

• If you disable one of the CPU cores...

Threaded : 38.0s

• Insanely horrible performance. Better
performance with fewer CPU cores? It
makes no sense.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Interlude

• It's at this point that programmers often
decide to abandon threads altogether

• Or write a blog rant that vaguely describes
how Python threads "suck" because of their
failed attempt at Python supercomputing

• Well, yes there is definitely some "suck"
going on, but let's dig a little deeper...

81

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 7

82

The Inside Story on Python Threads

"The horror! The horror!" - Col. Kurtz

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

What is a Thread?

• Python threads are real system threads

• POSIX threads (pthreads)

• Windows threads

• Fully managed by the host operating system

• All scheduling/thread switching

• Represent threaded execution of the Python
interpreter process (written in C)

83

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

The Infamous GIL
• Here's the rub...

• Only one Python thread can execute in the
interpreter at once

• There is a "global interpreter lock" that
carefully controls thread execution

• The GIL ensures that sure each thread gets
exclusive access to the entire interpreter
internals when it's running

84

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

GIL Behavior
• Whenever a thread runs, it holds the GIL

• However, the GIL is released on blocking I/O

85

I/O I/O I/O

rel
ea

se

ac
qu

ire

rel
ea

se

ac
qu

ire

ac
qu

ire

rel
ea

se

• So, any time a thread is forced to wait, other
"ready" threads get their chance to run

• Basically a kind of "cooperative" multitasking

run run run run

ac
qu

ire

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

CPU Bound Processing

• To deal with CPU-bound threads, the
interpreter periodically performs a "check"

• By default, every 100 interpreter "ticks"

86

CPU Bound
Thread Run 100

ticks
Run 100

ticks
Run 100

ticks

ch
ec

k
ch

ec
k

ch
ec

k

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

The Check Interval
• The check interval is a global counter that is

completely independent of thread scheduling

87

Main Thread
100 ticks ch

ec
k

ch
ec

k
ch

ec
k

100 ticks 100 ticks

Thread 2

Thread 3

Thread 4

100 ticks

• A "check" is simply made every 100 "ticks"

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

The Periodic Check

• What happens during the periodic check?

• In the main thread only, signal handlers
will execute if there are any pending
signals

• Release and reacquisition of the GIL

• That last bullet describes how multiple CPU-
bound threads get to run (by briefly releasing
the GIL, other threads get a chance to run).

88

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

What is a "Tick?"
• Ticks loosely map to interpreter instructions

89

def countdown(n):
 while n > 0:
 print n
 n -= 1

>>> import dis
>>> dis.dis(countdown)
0 SETUP_LOOP 33 (to 36)
3 LOAD_FAST 0 (n)
6 LOAD_CONST 1 (0)
9 COMPARE_OP 4 (>)
12 JUMP_IF_FALSE 19 (to 34)
15 POP_TOP
16 LOAD_FAST 0 (n)
19 PRINT_ITEM
20 PRINT_NEWLINE
21 LOAD_FAST 0 (n)
24 LOAD_CONST 2 (1)
27 INPLACE_SUBTRACT
28 STORE_FAST 0 (n)
31 JUMP_ABSOLUTE 3
...

Tick 1

Tick 2

Tick 3

Tick 4

• Instructions in
the Python VM

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Tick Execution
• Interpreter ticks are not time-based

• Ticks don't have consistent execution times

90

• Long operations can block everything
>>> nums = xrange(100000000)
>>> -1 in nums
False
>>>

1 tick (~ 6.6 seconds)

• Try hitting Ctrl-C (ticks are uninterruptible)
>>> nums = xrange(100000000)
>>> -1 in nums
^C^C^C (nothing happens, long pause)
...
KeyboardInterrupt
>>>

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Thread Scheduling

• Python does not have a thread scheduler

• There is no notion of thread priorities,
preemption, round-robin scheduling, etc.

• For example, the list of threads in the
interpreter isn't used for anything related to
thread execution

• All thread scheduling is left to the host
operating system (e.g., Linux, Windows, etc.)

91

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

GIL Implementation
• The GIL is not a simple mutex lock

• The implementation (Unix) is either...

• A POSIX unnamed semaphore

• Or a pthreads condition variable

• All interpreter locking is based on signaling

• To acquire the GIL, check if it's free. If
not, go to sleep and wait for a signal

• To release the GIL, free it and signal

92

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Thread Scheduling
• Thread switching is far more subtle than most

programmers realize (it's tied up in the OS)

93

Thread 1
100 ticks

ch
ec

k
ch

ec
k

ch
ec

k

100 ticks

Thread 2

...

Operating
System

signal

signal

SUSPENDED

Thread
Context
Switch

ch
ec

k

• The lag between signaling and scheduling may
be significant (depends on the OS)

SUSPENDED

signal

signal

ch
ec

k

signal

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

CPU-Bound Threads

• As we saw earlier, CPU-bound threads have
horrible performance properties

• Far worse than simple sequential execution

• 24.6 seconds (sequential)

• 45.5 seconds (2 threads)

• A big question : Why?

• What is the source of that overhead?

94

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Signaling Overhead

• GIL thread signaling is the source of that

• After every 100 ticks, the interpreter

• Locks a mutex

• Signals on a condition variable/semaphore
where another thread is always waiting

• Because another thread is waiting, extra
pthreads processing and system calls get
triggered to deliver the signal

95

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Rough Measurement
• Sequential Execution (OS-X, 1 CPU)

• 736 Unix system calls

• 117 Mach System Calls

• Two threads (OS-X, 1 CPU)

• 1149 Unix system calls

• ~ 3.3 Million Mach System Calls

• Yow! Look at that last figure.

96

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Multiple CPU Cores
• The penalty gets far worse on multiple cores

• Two threads (OS-X, 1 CPU)

• 1149 Unix system calls

• ~3.3 Million Mach System Calls

• Two threads (OS-X, 2 CPUs)

• 1149 Unix system calls

• ~9.5 Million Mach System calls

97

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Multicore GIL Contention
• With multiple cores, CPU-bound threads get

scheduled simultaneously (on different
processors) and then have a GIL battle

98

Thread 1 (CPU 1) Thread 2 (CPU 2)

Release GIL signal
Acquire GIL Wake

Acquire GIL (fails)
Release GIL
Acquire GIL

signal
Wake
Acquire GIL (fails)

run

run

run

• The waiting thread (T2) may make 100s of
failed GIL acquisitions before any success

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

The GIL and C Code

• As mentioned, Python can talk to C/C++

• C/C++ extensions can release the
interpreter lock and run independently

• Caveat : Once released, C code shouldn't
do any processing related to the Python
interpreter or Python objects

• The C code itself must be thread-safe

99

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

The GIL and C Extensions
• Having C extensions release the GIL is how

you get into true "parallel computing"

100

Thread 1:

Thread 2

Python
instructions

Python
instructions

C extension
code

GIL
rel

eas
e

GIL
acq

uir
e

Python
instructions

GIL
rel

eas
e

GIL
acq

uir
e

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

How to Release the GIL

• The ctypes module already releases the GIL
when calling out to C code

• In hand-written C extensions, you have to
insert some special macros

101

PyObject *pyfunc(PyObject *self, PyObject *args) {
 ...
 Py_BEGIN_ALLOW_THREADS
 // Threaded C code
 ...
 Py_END_ALLOW_THREADS
 ...
}

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

The GIL and C Extensions

• The trouble with C extensions is that you
have to make sure they do enough work

• A dumb example (mindless spinning)

102

void churn(int n) {
 while (n > 0) {
 n--;
 }
}

• How big do you have to make n to actually see
any kind of speedup on multiple cores?

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

The GIL and C Extensions
• Here's some Python test code

103

def churner(n):
 count = 1000000
 while count > 0:
 churn(n) # C extension function
 count -= 1

Sequential execution
churner(n)
churner(n)

Threaded execution
t1 = threading.Thread(target=churner, args=(n,))
t2 = threading.Thread(target=churner, args=(n,))
t1.start()
t2.start()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

The GIL and C Extensions
• Speedup of running two threads versus

sequential execution

104

0

0.5

1.0

1.5

2.0

0 2500 5000 7500 10000

(n)

Speedup Extension code
runs for ~4

microseconds
per call

• Note: 2 Ghz Intel Core Duo, OS-X 10.5.6

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Why is the GIL there?
• Simplifies the implementation of the Python

interpreter (okay, sort of a lame excuse)

• Better suited for reference counting
(Python's memory management scheme)

• Simplifies the use of C/C++ extensions.
Extension functions do not need to worry
about thread synchronization

• And for now, it's here to stay... (although
people continue to try and eliminate it)

105

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 8

106

Final Words on Threads

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Using Threads

• Despite some "issues," there are situations
where threads are appropriate and where
they perform well

• There are also some tuning parameters

107

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

I/O Bound Processing
• Threads are still useful for I/O-bound apps

• For example : A network server that needs to
maintain several thousand long-lived TCP
connections, but is not doing tons of heavy
CPU processing

• Here, you're really only limited by the host
operating system's ability to manage and
schedule a lot of threads

• Most systems don't have much of a problem--
even with thousands of threads

108

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Why Threads?

• If everything is I/O-bound, you will get a very
quick response time to any I/O activity

• Python isn't doing the scheduling

• So, Python is going to have a similar response
behavior as a C program with a lot of I/O
bound threads

• Caveat: You have to stay I/O bound!

109

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Final Comments

• Python threads are a useful tool, but you
have to know how and when to use them

• I/O bound processing only

• Limit CPU-bound processing to C
extensions (that release the GIL)

• Threads are not the only way...

110

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 9

111

Processes and Messages

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Concept: Message Passing

• An alternative to threads is to run multiple
independent copies of the Python interpreter

• In separate processes

• Possibly on different machines

• Get the different interpreters to cooperate
by having them send messages to each other

112

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Message Passing

113

Python Python
send() recv()

pipe/socket

• On the surface, it's simple

• Each instance of Python is independent

• Programs just send and receive messages

• Two main issues

• What is a message?

• What is the transport mechanism?

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Messages

• A message is just a bunch of bytes (a buffer)

• A "serialized" representation of some data

• Creating serialized data in Python is easy

114

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

pickle Module
• A module for serializing objects

115

• Serializing an object onto a "file"
import pickle
...
pickle.dump(someobj,f)

• Unserializing an object from a file
someobj = pickle.load(f)

• Here, a file might be a file, a pipe, a wrapper
around a socket, etc.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

pickle Module

• Pickle can also turn objects into byte strings

import pickle
Convert to a string
s = pickle.dumps(someobj)
...
Load from a string
someobj = pickle.loads(s)

• You might use this embed a Python object
into a message payload

116

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

cPickle vs pickle
• There is an alternative implementation of

pickle called cPickle (written in C)

• Use it whenever possible--it is much faster

117

import cPickle as pickle
...
pickle.dump(someobj,f)

• There is some history involved. There are a
few things that cPickle can't do, but they are
somewhat obscure (so don't worry about it)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Pickle Commentary
• Using pickle is almost too easy

• Almost any Python object works

• Builtins (lists, dicts, tuples, etc.)

• Instances of user-defined classes

• Recursive data structures

• Exceptions

• Files and network connections

• Running generators, etc.
118

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Message Transport
• Python has various low-level mechanisms

• Pipes

• Sockets

• FIFOs

• Libraries provide access to other systems

• MPI

• XML-RPC (and many others)

119

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An Example
• Launching a subprocess and hooking up the

child process via a pipe

• Use the subprocess module

120

import subprocess

p = subprocess.Popen(['python','child.py'],
 stdin=subprocess.PIPE,
 stdout=subprocess.PIPE)

p.stdin.write(data) # Send data to subprocess
p.stdout.read(size) # Read data from subprocess

Python
p.stdin
p.stdout

Python
sys.stdin
sys.stdoutPipe

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Pipes and Pickle

• Most programmers would use the subprocess
module to run separate programs and collect
their output (e.g., system commands)

• However, if you put a pickling layer around the
files, it becomes much more interesting

• Becomes a communication channel where you
can send just about any Python object

121

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Message Channel
• A class that wraps a pair of files

122

channel.py
import pickle

class Channel(object):
 def __init__(self,out_f,in_f):
 self.out_f = out_f
 self.in_f = in_f
 def send(self,item):
 pickle.dump(item,self.out_f)
 self.out_f.flush()
 def recv(self):
 return pickle.load(self.in_f)

• Send/Receive implemented using pickle

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Some Sample Code
• A sample child process

123

child.py
import channel
import sys

ch = channel.Channel(sys.stdout,sys.stdin)
while True:
 item = ch.recv()
 ch.send(("child",item))

• Parent process setup
parent.py
import channel
import subprocess

p = subprocess.Popen(['python','child.py'],
 stdin=subprocess.PIPE,
 stdout=subprocess.PIPE)
ch = channel.Channel(p.stdin,p.stdout)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Some Sample Code

• Using the child worker

124

>>> ch.send("Hello World")
Hello World
>>> ch.send(42)
42
>>> ch.send([1,2,3,4])
[1, 2, 3, 4]
>>> ch.send({'host':'python.org','port':80})
{'host': 'python.org', 'port': 80}
>>>

This output is being
produced by the child

• You can send almost any Python object
(numbers, lists, dictionaries, instances, etc.)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Big Picture
• Can easily have 10s-1000s of communicating

Python interpreters

125

Python

Python

Python

Python

Python
Python

Python

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Interlude

• Message passing is a fairly general concept

• However, it's also kind of nebulous in Python

• No agreed upon programming interface

• Vast number of implementation options

• Intersects with distributed objects, RPC,
cross-language messaging, etc.

126

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 10

127

The Multiprocessing Module

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

multiprocessing Module

• A new library module added in Python 2.6

• Originally known as pyprocessing (a third-
party extension module)

• This is a module for writing concurrent
Python programs based on communicating
processes

• A module that is especially useful for
concurrent CPU-bound processing

128

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Using multiprocessing

• Here's the cool part...

• You already know how to use multiprocessing

• At a very high-level, it simply mirrors the
thread programming interface

• Instead of "Thread" objects, you now work
with "Process" objects.

129

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

multiprocessing Example
• Define tasks using a Process class

import time
import multiprocessing

class CountdownProcess(multiprocessing.Process):
 def __init__(self,count):
 multiprocessing. Process.__init__(self)
 self.count = count
 def run(self):
 while self.count > 0:
 print "Counting down", self.count
 self.count -= 1
 time.sleep(5)
 return

• You inherit from Process and redefine run()

130

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Launching Processes

• To launch, same idea as with threads

if __name__ == '__main__':
 p1 = CountdownProcess(10) # Create the process object
 p1.start() # Launch the process

 p2 = CountdownProcess(20) # Create another process
 p2.start() # Launch

• Processes execute until run() stops

• A critical detail : Always launch in main as
shown (required for Windows)

131

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Functions as Processes

• Alternative method of launching processes
def countdown(count):
 while count > 0:
 print "Counting down", count
 count -= 1
 time.sleep(5)

if __name__ == '__main__':
 p1 = multiprocessing.Process(target=countdown,
 args=(10,))
p1.start()

• Creates a Process object, but its run()
method just calls the given function

132

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Does it Work?
• Consider this CPU-bound function

def count(n):
 while n > 0:
 n -= 1

133

• Sequential Execution:
count(100000000)
count(100000000)

• Multiprocessing Execution
p1 = Process(target=count,args=(100000000,))
p1.start()
p2 = Process(target=count,args=(100000000,))
p2.start()

24.6s

12.5s

• Yes, it seems to work

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

 Other Process Features
• Joining a process (waits for termination)

p = Process(target=somefunc)
p.start()
...
p.join()

• Making a daemonic process

134

p = Process(target=somefunc)
p.daemon = True
p.start()

• Terminating a process
p = Process(target=somefunc)
...
p.terminate()

p = Process(target=somefunc)
p.daemon = True
p.start()

• These mirror similar thread functions

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Distributed Memory

• With multiprocessing, there are no shared
data structures

• Every process is completely isolated

• Since there are no shared structures,
forget about all of that locking business

• Everything is focused on messaging

135
p = Process(target=somefunc)
p.daemon = True
p.start()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Pipes
• A channel for sending/receiving objects

136
p = Process(target=somefunc)
p.daemon = True
p.start()

(c1, c2) = multiprocessing.Pipe()

• Returns a pair of connection objects (one
for each end-point of the pipe)

• Here are methods for communication

c.send(obj) # Send an object
c.recv() # Receive an object

c.send_bytes(buffer) # Send a buffer of bytes
c.recv_bytes([max]) # Receive a buffer of bytes

c.poll([timeout]) # Check for data

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Using Pipes

• The Pipe() function largely mimics the
behavior of Unix pipes

• However, it operates at a higher level

• It's not a low-level byte stream

• You send discrete messages which are
either Python objects (pickled) or buffers

137
p = Process(target=somefunc)
p.daemon = True
p.start()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Pipe Example

138
p = Process(target=somefunc)
p.daemon = True
p.start()

def consumer(p1, p2):
 p1.close() # Close producer's end (not used)
 while True:
 try:
 item = p2.recv()
 except EOFError:
 break
 print item # Do other useful work here

• A simple data consumer

• A simple data producer
def producer(sequence, output_p):
 for item in sequence:
 output_p.send(item)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Pipe Example

139
p = Process(target=somefunc)
p.daemon = True
p.start()

if __name__ == '__main__':
 p1, p2 = multiprocessing.Pipe()

 cons = multiprocessing.Process(
 target=consumer,
 args=(p1,p2))
 cons.start()

 # Close the input end in the producer
 p2.close()

 # Go produce some data
 sequence = xrange(100) # Replace with useful data
 producer(sequence, p1)

 # Close the pipe
 p1.close()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Message Queues
• multiprocessing also provides a queue

• The programming interface is the same

140
p = Process(target=somefunc)
p.daemon = True
p.start()

from multiprocessing import Queue

q = Queue()
q.put(item) # Put an item on the queue
item = q.get() # Get an item from the queue

• There is also a joinable Queue
from multiprocessing import JoinableQueue

q = JoinableQueue()
q.task_done() # Signal task completion
q.join() # Wait for completion

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Queue Implementation

• Queues are implemented on top of pipes

• A subtle feature of queues is that they have
a "feeder thread" behind the scenes

• Putting an item on a queue returns
immediately (allowing the producer to keep
working)

• The feeder thread works on its own to
transmit data to consumers

141
p = Process(target=somefunc)
p.daemon = True
p.start()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Queue Example
• A consumer process

142
p = Process(target=somefunc)
p.daemon = True
p.start()

def consumer(input_q):
 while True:
 # Get an item from the queue
 item = input_q.get()
 # Process item
 print item
 # Signal completion
 input_q.task_done()

• A producer process
def producer(sequence,output_q):
 for item in sequence:
 # Put the item on the queue
 output_q.put(item)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Queue Example
• Running the two processes

143
p = Process(target=somefunc)
p.daemon = True
p.start()

if __name__ == '__main__':
 from multiprocessing import Process, JoinableQueue
 q = JoinableQueue()

 # Launch the consumer process
 cons_p = Process(target=consumer,args=(q,))
 cons_p.daemon = True
 cons_p.start()

 # Run the producer function on some data
 sequence = range(100) # Replace with useful data
 producer(sequence,q)

 # Wait for the consumer to finish
 q.join()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Commentary
• If you have written threaded programs that

strictly stick to the queuing model, they can
probably be ported to multiprocessing

• The following restrictions apply

• Only objects compatible with pickle
can be queued

• Tasks can not rely on any shared data
other than a reference to the queue

144
p = Process(target=somefunc)
p.daemon = True
p.start()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Other Features
• multiprocessing has many other features

• Process Pools

• Shared objects and arrays

• Synchronization primitives

• Managed objects

• Connections

• Will briefly look at one of them

145
p = Process(target=somefunc)
p.daemon = True
p.start()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Process Pools

• Creating a process pool

146
p = Process(target=somefunc)
p.daemon = True
p.start()

p = multiprocessing.Pool([numprocesses])

• Pools provide a high-level interface for
executing functions in worker processes

• Let's look at an example...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Pool Example
• Define a function that does some work

• Example : Compute a SHA-512 digest of a file

147
p = Process(target=somefunc)
p.daemon = True
p.start()

import hashlib

def compute_digest(filename):
 digest = hashlib.sha512()
 f = open(filename,'rb')
 while True:
 chunk = f.read(8192)
 if not chunk: break
 digest.update(chunk)
 f.close()
 return digest.digest()

• This is just a normal function (no magic)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Pool Example
• Here is some code that uses our function

• Make a dict mapping filenames to digests

148
p = Process(target=somefunc)
p.daemon = True
p.start()

import os
TOPDIR = "/Users/beazley/Software/Python-3.0"

digest_map = {}
for path, dirs, files in os.walk(TOPDIR):
 for name in files:
 fullname = os.path.join(path,name)
 digest_map[fullname] = compute_digest(fullname)

• Running this takes about 10s on my machine

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Pool Example
• With a pool, you can farm out work

• Here's a small sample

149
p = Process(target=somefunc)
p.daemon = True
p.start()

p = multiprocessing.Pool(2) # 2 processes

result = p.apply_async(compute_digest,('README.txt',))
...
... various other processing
...
digest = result.get() # Get the result

• This executes a function in a worker process
and retrieves the result at a later time

• The worker churns in the background allowing
the main program to do other things

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Pool Example
• Make a dictionary mapping names to digests

150
p = Process(target=somefunc)
p.daemon = True
p.start()

import multiprocessing
import os
TOPDIR = "/Users/beazley/Software/Python-3.0"

p = multiprocessing.Pool(2) # Make a process pool
digest_map = {}
for path, dirs, files in os.walk(TOPDIR):
 for name in files:
 fullname = os.path.join(path,name)
 digest_map[fullname] = p.apply_async(
 compute_digest, (fullname,)
)

Go through the final dictionary and collect results
for filename, result in digest_map.items():
 digest_map[filename] = result.get()

• This runs in about 5.6 seconds

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 11

151

Alternatives to Threads and Processes

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Alternatives
• In certain kinds of applications, programmers

have turned to alternative approaches that
don't rely on threads or processes

• Primarily this centers around asynchronous I/O
and I/O multiplexing

• You try to make a single Python process run as
fast as possible without any thread/process
overhead (e.g., context switching, stack space,
and so forth)

152
p = Process(target=somefunc)
p.daemon = True
p.start()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Two Approaches
• There seems to be two schools of thought...

• Event-driven programming

• Turn all I/O handling into events

• Do everything through event handlers

• asyncore, Twisted, etc.

• Coroutines

• Cooperative multitasking all in Python

• Tasklets, green threads, etc.

153
p = Process(target=somefunc)
p.daemon = True
p.start()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Events and Asyncore
• asyncore library module

• Implements a wrapper around sockets that
turn all blocking I/O operations into events

154
p = Process(target=somefunc)
p.daemon = True
p.start()

s = socket(...)

s.accept()
s.connect(addr)
s.recv(maxbytes)
s.send(msg)
...

from asyncore import dispatcher
class MyApp(dispatcher):
 def handle_accept(self):
 ...
 def handle_connect(self):
 ...
 def handle_read(self):
 ...
 def handle_write(self):
 ...
Create a socket and wrap it
s = MyApp(socket())

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Events and Asyncore
• To run, asyncore provides a central event loop

based on I/O multiplexing (select/poll)

155
p = Process(target=somefunc)
p.daemon = True
p.start()

import asyncore
asyncore.loop() # Run the event loop

Event Loop

socket socket socket socket

dispatcher

select()/poll()

handle_*()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Asyncore Commentary
• Frankly, asyncore is one of the ugliest, most

annoying, mind-boggling modules in the entire
Python library

• Combines all of the "fun" of network
programming with the "elegance" of GUI
programming (sic)

• However, if you use this module, you can
technically create programs that have
"concurrency" without any threads/processes

156
p = Process(target=somefunc)
p.daemon = True
p.start()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Coroutines

• An alternative concurrency approach is
possible using Python generator functions
(coroutines)

• This is a little subtle, but I'll give you the gist

• First, a quick refresher on generators

157
p = Process(target=somefunc)
p.daemon = True
p.start()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Generator Refresher
• Generator functions are commonly used to

feed values to for-loops (iteration)

158
p = Process(target=somefunc)
p.daemon = True
p.start()

def countdown(n):
 while n > 0:
 yield n
 n -= 1

for x in countdown(10):
 print x

• Under the covers, the countdown function
executes on successive next() calls

>>> c = countdown(10)
>>> c.next()
10
>>> c.next()
9
>>>

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An Insight
• Whenever a generator function hits the yield

statement, it suspends execution

159
p = Process(target=somefunc)
p.daemon = True
p.start()

def countdown(n):
 while n > 0:
 yield n
 n -= 1

• Here's the idea : Instead of yielding a value, a
generator can yield control

• You can write a little scheduler that cycles
between generators, running each one until it
explicitly yields

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Scheduling Example
• First, you set up a set of "tasks"

160
p = Process(target=somefunc)
p.daemon = True
p.start()

def countdown_task(n):
 while n > 0:
 print n
 yield
 n -= 1

A list of tasks to run
from collections import deque
tasks = deque([
 countdown_task(5),
 countdown_task(10),
 countdown_task(15)
])

• Each task is a generator function

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Scheduling Example
• Now, run a task scheduler

161
p = Process(target=somefunc)
p.daemon = True
p.start()

def scheduler(tasks):
 while tasks:
 task = tasks.popleft()
 try:
 next(task) # Run to the next yield
 tasks.append(task) # Reschedule
 except StopIteration:
 pass

Run it
scheduler(tasks)

• This loop is what drives the application

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Scheduling Example

• Output

162
p = Process(target=somefunc)
p.daemon = True
p.start()

5
10
15
4
9
14
3
8
13
...

• You'll see the different tasks cycling

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Coroutines and I/O
• It is also possible to tie coroutines to I/O

• You take an event loop (like asyncore), but
instead of firing callback functions, you
schedule coroutines in response to I/O activity

163
p = Process(target=somefunc)
p.daemon = True
p.start()

Scheduler loop

socket socket socket socket

coroutine

select()/poll()
next()

• Unfortunately, this requires its own tutorial...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Coroutine Commentary

• Usage of coroutines is somewhat exotic

• Mainly due to poor documentation and the
"newness" of the feature itself

• There are also some grungy aspects of
programming with generators

164
p = Process(target=somefunc)
p.daemon = True
p.start()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Coroutine Info

• I gave a tutorial that goes into more detail

• "A Curious Course on Coroutines and
Concurrency" at PyCON'09

• http://www.dabeaz.com/coroutines

165
p = Process(target=somefunc)
p.daemon = True
p.start()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 12

166

Final Words and Wrap up

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Quick Summary

167

• Covered various options for Python concurrency

• Threads

• Multiprocessing

• Event handling

• Coroutines/generators

• Hopefully have expanded awareness of how
Python works under the covers as well as some
of the pitfalls and tradeoffs

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Thanks!

168

• I hope you got some new ideas from this class

• Please feel free to contact me

http://www.dabeaz.com

• Also, I teach Python classes (shameless plug)

